
ProfileCreator
AP Orlebeke (@apizz)

About Me
AP Orlebeke (@apizz)

Academic Technology Integrator
& Mac Administrator @
The Masters School

Github https://github.com/apizz

Blog https://aporlebeke.wordpress.com

This is a little bit about me.

The Masters School is a private 5-12 day and boarding school North of NYC.

While my primary responsibility is tech integration, I’m also the primary manager of
the school’s Macs as well as our MDM.

https://github.com/apizz
https://aporlebeke.wordpress.com

Overview

1. Overview of Current Profile-building Tools

2. ProfileCreator 101

3. Quick Review of Configuration Profiles

4. Demo

5. How to Contribute

6. Q&A

Here’s an overview of what we’ll be talking about.

First, I’m going to give a quick overview of the currently available profile-creation
tools.

Then, I’m going to introduce you to ProfileCreator, the project, and cover it’s core
features.

Next, we’re going to make sure we’re all on the same page with regards to
configuration profiles, what they are, what’s in them, and why we care about them.

Then we’ll actually build a few profiles with ProfileCreator, managing both Apple and
third-party preferences.

Lastly, I’ll talk briefly about how you can contribute and time permitting we’ll build a
manifest together, and have some time at the end for questions.

Current Profile Building Tools
GUI Tools

● Profile Manager (macOS Server.app)
● Apple Configurator 2
● MDM (Jamf, Fleetsmith, etc.)
● tccprofile & Jamf PPPC Utility (PPPC)

Command Line Tools

● mcxToProfile (Custom Settings payload)
● make-profile-pkg
● tccprofile (PPPC)

If you are already familiar with profiles, then you already know that ProfileCreator
joins many already well-known and established profile creating tools. Among them,
Apple’s Profile Manager, which is built into macOS Server but handles only macOS
configuration profiles, Apple Configurator 2 for iOS & tvOS profiles, and if you have an
MDM you have that profile building interface as well.

There are also several popular open-source tools, like mcxToProfile, which are great,
but you have to already have a fair bit of knowledge about profiles in order to use
them.

https://itunes.apple.com/us/app/os-x-server/id883878097
https://itunes.apple.com/us/app/apple-configurator-2/id1037126344
https://github.com/carlashley/tccprofile
https://github.com/jamf/PPPC-Utility
https://github.com/timsutton/mcxToProfile
https://github.com/timsutton/make-profile-pkg
https://github.com/carlashley/tccprofile

Profile Manager Apple Configurator 2 ProfileCreator MDM

Profile Building GUIs

@erikberglund Github
#profilecreator

ProfileCreator

ProfileCreator is a macOS app (10.12 & later) developed by Erik Berglund, a member
of the MacAdmin community, that allows you to build standard and customized
configuration profiles for macOS, iOS, and tvOS. So out of the box, you can build
profiles for all three Apple OSs from one application. This includes not only Apple
preferences, but also third-party application preferences as well, which you’ll see in a
few moments.

I just wanted to give a shoutout to Erik. He has been very responsive to address
issues, listening to feedback from the community, and adding enhancements to the
app. He and I have been working together closely on this project as of late, so thank
you, Erik!

I personally first stumbled on ProfileCreator in November 2018 somewhere in the
MacAdmins Slack, and since then have become a very active member of the
community and contributing directly to the project. When I first started to play with
ProfileCreator, I quickly discovered how much less time it took to create a profile for
third-party apps, like NoMAD and munki. Previously I had had to read a whole bunch
of documentation, write the preferences and their values myself in a text editor, build
the profile, and then ultimately test it to make sure it worked as expected.

https://github.com/erikberglund/
https://github.com/erikberglund/ProfileCreator

ProfileCreator

“...make it easier to create configuration profiles.”

- Erik Berglund

http://erikberglund.github.io/2018/Profile_Creator_Beta_1/

And that’s the primary goal behind ProfileCreator: to make the task of creating
configuration profiles easier, for both new and veteran configuration profile builders.
Ultimately we’re trying to take all the things the other tools I mentioned earlier do well,
the aspects that could improved, and as well as add a bunch of missing features and
build them all into this one app.

While ProfileCreator is still in beta, and there are many things it does already which
make it a really powerful tool.

http://erikberglund.github.io/2018/Profile_Creator_Beta_1/

ProfileCreator

Here is a quick preview of the interface, which we’ll look at more closely in the demo.

ProfileCreator
2 Projects

● ProfileCreator
○ https://github.com/erikberglund/ProfileCreator/
○ Not currently open-source
○ Wiki

● ProfileManifests
○ https://github.com/erikberglund/ProfileManifests
○ Open-source ProfilePayloads manifest framework
○ 11 contributors
○ 77 Apple preference domains

■ Wi-Fi, Login Window, Privacy Preferences Policy Control
○ 36 third-party app domains and counting

■ Munki, NoMAD, Microsoft Office

ProfileCreator is divided into two Github projects:

1. ProfileCreator - for the app itself, which is not currently open-source. Here you
can get the latest beta, access a user guide and other information from the
wiki, and submit issues & feature requests for the app.

2. ProfileManifests - this project makes up the ProfilePayloads framework, which
provides ProfileCreator with all the manifests it uses for each payload, like the
macOS Login Window. A manifest is what contains all the settings that define
each preference within a payload / preference domain, like the name of the
preference and it’s type - boolean (true/false), string (text), etc. This is also
where you can directly contribute to the project.

Thus far, there have been 11 different contributors who have created new manifests
for third-party applications or updated existing manifests with new preferences, and in
a few slides you’ll see all the current third-party app preferences that are supported.

ProfileCreator currently supports the overwhelming majority of the native Apple
preference domains - 77 in total - as well many popular third-party preferences - 36 in
total -, like Munki, NoMAD, and Microsoft Office, to name a few.

https://github.com/erikberglund/ProfileCreator/
https://github.com/erikberglund/ProfileCreator/wiki
https://github.com/erikberglund/ProfileManifests

Manifests

● An XML document describing an application’s preference keys that
can be managed

● Used by Apple Configurator, among others
○ /Applications/Apple Configurator 2.app

/Contents/Frameworks/ConfigurationProfile.framework/Versions/A/Resources

● Apple manifest format documentation

A manifest is what describes the preferences that can be managed, and
ProfileCreator uses this format, along with Apple Configurator and others. This is a
documented standard by Apple, and which ProfileCreator in some cases builds on.
So everything you see in the interface is a function of what is written within a
manifest, and is where members of the community can contribute to the project. Time
permitting at the end, we’ll build a manifest together.

https://developer.apple.com/library/archive/documentation/MacOSXServer/Conceptual/Preference_Manifest_Files/Preface/Preface.html

ProfileCreator Core Features
1. User-friendly GUI w/ an XML preview

2. Manage only the specific preferences you want

3. Third-party application support

4. Helpful preference descriptions

5. Preference dependencies (x requires y; if x = ? then requires y)

6. Option to export in MCX format for Custom Settings
a. Can import directly into your MDM

7. Extensible framework built on Apple’s Preference Manifest format
a. Anyone can contribute!

Core to ProfileCreator is a user-friendly graphical interface that allows you to quickly
see the resulting XML code that will be produced in an exported profile. This avoids
needing to export a profile and open it in a text editor to verify its contents.
Additionally, you can copy the XML from this

Unlike all other graphical profile creation tools, ProfileCreator allows you to only add
and manage the specific preferences you want. No longer do you need to make
decisions for every single preference within a payload.

As previously mentioned, ProfileCreator supports third-party app preferences. This is
a big value add because of the fact it avoids needing to spend the time reading
documentation or sleuthing to discover the name of each preference you want to
manage and its desired value. For new Mac admins, this makes the barrier to entry
much lower.

ProfileCreator also includes the option for descriptions for each preference. While
most preference names make it clear what the preference controls, this isn’t always
the case. These descriptions help new and profile veterans have a greater
understanding of what the preference deals with and other helpful details that you
would otherwise have to wade through official documentation to find.

ProfileCreator also includes the ability to link preferences together. For example, if a
preference requires another preference to be enabled in order to work correctly,
ProfileCreator will indicate this relationship when these conditions aren’t met.

https://developer.apple.com/library/archive/documentation/MacOSXServer/Conceptual/Preference_Manifest_Files/Chapter_1/PM_Chapter1.html#//apple_ref/doc/uid/TP30000196-TPXREF115

Additionally, if these conditions aren’t met and the profile is exported, ProfileCreator
will automatically exclude these preferences from the profile.

You can choose to export created profiles in Apple’s MCX style, which is the format
that’s used as part of the “Custom Settings” payload. Using this format when
exporting a profile allows you to import profiles created with ProfileCreator directly into
an MDM in this payload.

As already mentioned, ProfileCreator’s ProfilePayloads framework provides the ability
for anyone to contribute as new preferences are added, or additional third-party app
management is desired. This is based on Apple’s established Preference Manifest
format, but also builds on it. This is where the real value of ProfileCreator, because
rather than each of us having to figure out and maintain all these different preferences
for our respective organizations, we can contribute to a single mechanism from which
others can benefit. And time permitting,

Here are all the supported native Apple preference domains in ProfileCreator,
continued on next slide. You’ll also find this list on ProfileCreator Github wiki.

You’ll notice that currently the only supported OS for the Restrictions payload is
macOS. The Restrictions payload is also supported in iOS & tvOS, however these
preferences haven’t yet been built into the manifest. So there is still some room to
grow here.

77

Supported Third-Party Apps & Tools
AirServer
ANTS Framework
Citrix Receiver
Crypt
DetectX Swift
Enterprise Connect
Firefox
GarageBand
Google Chrome
iMovie
jamJAR
Logic Pro X
Microsoft AutoUpdate
Microsoft AutoUpdate FBA

Microsoft Error Reporting
Microsoft Excel
Microsoft Office
Microsoft Office 365 Service
Microsoft OneDrive
Microsoft OneDrive Updater
Microsoft OneNote
Microsoft Outlook
Microsoft PowerPoint
Microsoft Word
Munki
MunkiReport
NoMAD
NoMAD Login

NoMAD Login+
NoMAD Pro
NoMAD Shares
Platypus
Sal
Skype
TextEdit

35 & counting

Supported Payloads

Here is the current list of third party apps and services that are included in
ProfileCreator. So if you’re using any of these applications in your environment
already, ProfileCreator has you covered.

https://github.com/erikberglund/ProfileCreator/wiki/Supported-Payloads#application-managed-preferences

Why Profiles?

1. Enforce desired preferences

2. Native macOS management mechanism

3. Uses macOS .plist format

4. Some preferences require MDM (PPPC)

Apple Configuration Profile Reference
MDM Device Settings for IT

(This is more for the uninitiated) Let’s take a step back for a moment and make sure
we’re all on the same page regarding configuration profiles. So why use profiles?
Profiles allow you to enforce desired preferences. This means we’re configuring the
preferences the way we want them while also preventing users from changing them.
This helps us ensure settings - like security and software updates - are configured per
our organization’s needs.

Additionally, profiles use the same property list (PLIST) format that’s used throughout
the system for storing user & system preferences, so if you’ve worked with PLISTs
before (or with XML in general), this will already be familiar to you.

Lastly, with the release of macOS Mojave, Apple introduced a new security feature -
PPPC (Privacy Preferences Policy Control) - which can be managed via one or more
profiles. However, these profiles can only come from MDM. So for those folks that
don’t have an MDM and who use a tool like munki to handle profile installs, locally
installed profiles aren’t an option for this, nor are any command-line tools. As a
result, it seems like profiles and MDM moving forward may be the only ways to
manage new Apple preferences.

For reference, here are two links to Apple documentation on profiles.

https://developer.apple.com/business/documentation/Configuration-Profile-Reference.pdf
https://help.apple.com/deployment/mdm/#/

Why Profiles?

So, here’s an example from our environment. You’ll notice that despite being an
admin user and having unlocked the preference pane, there are several settings that
cannot be changed, as they’re managed by a profile. In this case, we have a different
mechanism for updating user passwords, so we don’t want users to be able to do this
from System Preferences, and why the “Change Password” button is greyed out.

What’s a Profile? What’s in it?
● Profile

○ An XML file that consists of payloads that load settings and other information
onto Apple devices.

○ Automates the configuration of settings, accounts, restrictions, and credentials.

● Payload
○ Manages specific preferences (keys & values)

■ ex. Login Window, Wi-Fi, PPPC
○ Has a number of defined unique settings

● Key = The preference
○ ex. Allow use of built-in camera

● Value = The setting
○ ex. True/False (boolean), Text (string), Number (integer), Date (date), Float (real)

(Again, for the unfamiliar) So what is a profile exactly? Some terminology so we’re all
on the same page:

● A profile is just an XML file, containing one or more payloads which contain
the preferences to be managed.

● A payload is what manages specific preferences, like Login Window,
Certificates, and Restrictions.

● The available preferences within a payload is defined by a key/value pair. The
key is what defines the preference while the value is what

https://help.apple.com/deployment/mdm/#/mdmbf9e668

Where are Profiles? (GUI)
System Preferences > Profiles

The easiest place to access all installed profiles when you’re on a machine is through
System Preferences.

Where are Profiles? (GUI)
System Preferences > Profiles (includes PPPC profiles in 10.14+)

With 10.14 Mojave, we can also see any PPPC (Privacy Preferences Policy Control)
profiles

Where are Profiles? (PLISTs)
/Library/Managed Preferences/*.plist

Where are Profiles? (PLISTs)
/Library/Application Support/com.apple.TCC/MDMOverrides.plist

ProfileCreator Demo

● Build a standard macOS profile
○ Multiple payloads

● Build a standard macOS PPPC profile

● Build a “Custom Settings” (MCX) profile

● Upload a Custom Settings profile into MDM

So let’s take a look at ProfileCreator in action. We’re going to build a couple standard
macOS profiles as well as a third-party app profile. I’ll also show you how you can
import third-party app profiles created with ProfileCreator into an MDM.

DEMO

Current Challenges
● Dependence on Apple & Vendors

Now that you’ve seen what ProfileCreator can do, I want to address some of the big
challenges that we’ve faced which ProfileCreator addresses.

When it comes to interface, we’re currently at the mercy of Apple & vendors. In the
case of MDMs & Profile Manager, unless your environment makes these resources
available off your LAN, you may be dependent on your org’s network and/or VPN &
Internet connection in order to build profiles. And as many of us know, Apple isn’t
always responsive to Radars and feature requests, so besides being able to manage
new preferences in subsequent OS releases, the feature set in these tools are pretty
limited.

Here are a few examples:

Current Challenges - Apple & Vendors
Apple Configurator 2 MDM (Jamf)

?

As you can see in the Apple Configurator image on the left, there is some menu
organization to preferences, but that it’s just a long list of preferences that you have to
read through in order to find what you’re looking for. The same is the case in Jamf,
albeit with slightly more menu structure separating different OSs.

Current Challenges - Apple & Vendors
Profile Manager

In Profile Manager here, you can see that the Custom Settings payload allows you to
specify individual preferences and their types for third-party apps, but it still requires
you to do a fair bit of sleuthing to determine what the preferences, preference types,
and corresponding values are, which isn’t ideal for new profile builders.

Current Challenges - Apple & Vendors PPPC
 MDM Web GUI (Jamf) Jamf PPPC Utility

Additionally, with the recent introduction of PPPC in Mojave, I was actually pretty
disappointed with both of our MDM’s solutions in the web interface and within their
own dedicated utility. In the web interface on the left, you have to manually enter
everything, which just isn’t as efficient or user-friendly as it could be. You have to
know all about the PPPC structure, how to ascertain the code signature for an app …
it’s just not great.

The PPPC Utility is definitely better, with a drag-and-drop interface along with the
ability to upload these directly into Jamf via their API, but there’s still a lot of manual
clicks to configure everything.

I think you’d agree that ProfileCreator handles this process better.

Current Challenges
● Dependence on Apple & Vendors

● Managing 1 preference = managing many
○ No “optional” preferences, despite Apple’s own documentation

○ In certain cases, this can cause unintended collisions

When it comes to interface, we’re currently at the mercy of Apple & vendors. In the
case of MDMs & Profile Manager, unless you’re environment makes these resources
available off LAN, you’re dependent on org network and/or VPN in order to build
profiles.

For the most part

Apple Configurator 2

Current Challenges - Managing 1 preference

So whether you are using Profile Manager, Apple Configurator 2, or an MDM,
whenever you enable a payload you see a list of preferences. In the case of the
Restrictions payload here, it’s a very long list, and all of these preferences become
managed. In this example, I just want to disable the ability for users to use the
camera.

Apple Configurator 2

Current Challenges - Managing 1 preference

The resulting profile, which you can see the contents of here, include this preference,
but also many others. So again, you have to make a decision regarding every
possible preference within any Apple payload. Depending on your organization, you
may not want to manage all of these, or be in a position to make a determination one
way or another.

Current Challenges - Unintended collisions
Security & Privacy Payload in Jamf

I bring up this issue because it bit us in our environment early on. One of the things
we do with all of our configuration profiles is we separate them such that each profile
only deals with a single payload. This makes it so if we ever have to make a change
to any of our profiles, we’re only affecting this one payload and set of preferences.
This also ends up making it easier to manage what Macs get what profiles.

However, when we were first deploying our machines that a number did not have our
Login Window configured correctly. After we looked at our profiles more closely, we
noticed something odd with the Security & Privacy payload ...

Here is a portion of that profile, and as you can see, the Security & Privacy payload
also includes the Login Window. However, no preferences are configured. And no
matter what your preferences are, this payload will always be there.

The end result is that if you plan on deploying either the Login Window or Security &
Privacy payloads, they must be in the same profile, at least in Jamf. The point here is
that MDM vendors don’t always get these things right.

Current Challenges
● Dependence on Apple & Vendors for interface, organization, & options

● Managing 1 preference = managing many
○ No “optional” preferences, despite Apple’s own documentation

○ In certain cases, this can cause unintended collisions

● Limited to native Apple / macOS preferences and features
○ No native third-party app support

Current Challenges
● Dependence on Apple & Vendors for interface, organization, & options

● Managing 1 preference = managing many
○ No “optional” preferences, despite Apple’s own documentation

○ In certain cases, this can cause unintended collisions

● Limited to native Apple / macOS preferences and features
○ No native third-party app support

● Sleuthing & managing third-party preferences takes time

Figuring out & managing 3rd-party preferences in most cases is time consuming.
There are some very well documented 3rd party app preferences - like Microsoft
Office Suite and BBEdit - but no easy way to build profiles using the preferences you
want. You would have to do this manually, which is prone to errors.

Current Challenges - Sleuthing

How to Manage Microsoft Office 2019 for Mac (Jamf webinar)

I took these slides from a Jamf webinar on managing preferences in Office 2019, as I
thought it did a really great job of illustrating the sleuthing process. You may already
be an expert sleuther, but for those who aren’t … Office for Mac is actually very well
documented in terms of preferences, their format types, values, etc., but not all
third-party apps can boast this.

So first we have to figure out where the preference lives. In most cases is either the
root /Library/Preferences folder or user ~/Library/Preferences, but not always. With
that, you can create a copy of the preferences file, make your desired preference
change, and then make another copy of the preference file for comparison. While we
can sometimes collect extraneous differences (AppExitGraceful & SessionDuration),
you can see in the example there is a MessageListLeftSwipeAction key that has a
value of 0. Because of how defaults reads preferences, the 0 could either be an
integer or a boolean, so we have to go a step further and verify this preference type.

https://youtu.be/Xb3jLxjfDkI?t=2399

Current Challenges - Sleuthing

How to Manage Microsoft Office 2019 for Mac (Jamf webinar)

So we can use the defaults read-type argument to verify this. Just a helpful tip:
because .plist files are binary files, normally if you wanted to open one in a text editor
you would have to convert it to XML. However, BBEdit will open binary files just fine,
converting it into the desired XML.

https://youtu.be/Xb3jLxjfDkI?t=2508

Current Challenges
● Dependence on Apple & Vendors for interface, organization, & options

● Managing 1 preference = managing many
○ No “optional” preferences, despite Apple’s own documentation

○ In certain cases, this can cause unintended collisions

● Limited to native Apple / macOS preferences and features
○ No native third-party app support

● Sleuthing & managing third-party preferences takes time

● No insight in GUI as to resulting profile XML

● Sharing & contributing is limited to PLISTs & is uncentralized

In Development
● Preference search w/in payloads

○ Make it easier to find the preference(s) you’re looking for

● Different payloads GUIs for the same domain
○ Ex. com.apple.MCX - Energy Settings, Time Server, and Mobile Accounts Payloads

● Interface for going more than 4 levels deep in XML
○ Ex. Google Chrome ManagedBookmarks

● Decimal support for floating point numbers (real)

● More robust wiki

On the Horizon
● Import profiles into ProfileCreator

● Merge/Split profiles

● Read preferences on disk and save as profile (mcxToProfile w/ GUI)

● Export profiles directly to an MDM using APIs

● Expandable preference key column

● Breadcrumbs & links to linked preferences

Because the preference keys don’t get wider when the ProfileCreator Editor window
becomes wider, in certain situations it makes it challenging to read all the text. This is
most common with dictionaries that have several preference keys within

https://github.com/timsutton/mcxToProfile

Let’s Build a Manifest! (Time Permitting)
● Enable Developer menu

● New macOS Mojave Software Update preference
○ Install app updates from the App Store

○ Different preference domain - com.apple.commerce

Want to Get Involved?
● Join the #profilecreator Mac Admins Slack Channel

● File an issue for new / missing preferences on ProfileCreator Github

● Fork ProfileManifests & review example manifest
○ https://github.com/erikberglund/ProfileManifests/blob/master/ManifestExamples/c

om.github.profilecreator.exampleApplication.plist

● Build a manifest for a third-party app/service not yet supported

If you’re looking to get involved, definitely join the #profilecreator channel in the
MacAdmins Slack. There’s also a number of resources in the ProfileManifests Github
on the wiki for getting started and writing your own manifests. Even if you don’t have
time or feel comfortable writing your own manifest, please do file an issue on the
ProfileCreator or ProfileManifests Github so we can eventually get these added.

https://github.com/erikberglund/ProfileManifests/blob/master/ManifestExamples/com.github.profilecreator.exampleApplication.plist
https://github.com/erikberglund/ProfileManifests/blob/master/ManifestExamples/com.github.profilecreator.exampleApplication.plist

Questions?

