
Apple Unified Log
Howard Oakley

https://eclecticlight.co

https://eclecticlight.co

El Capitan
Up to 4000 log entries in 8-9 hours

Apple’s Goals 1

• a single efficient logging mechanism for user and kernel mode

• to maximise information collection with minimum observer effect

• the compression of log data

• a managed log message lifecycle

• as much logging on as much of the time as possible

Apple’s Goals 2
• for privacy to be designed into the logging system

• a common system across macOS, iOS, watchOS, tvOS

• all legacy APIs (NSLog, asl_log_message, syslog, etc.) to be
redirected into the new unified log

• to emphasise debugging of macOS and apps, not providing any
facilities for system administration or audit

• to link to the sysdiagnose tool for gathering information for bug
reports etc.

Implementation of Unified log in Sierra, High Sierra

.tracev3 logs

• compressed binary format

• undocumented

• very efficient

• only accessible using log command and Console (closed source)

• Apple does not want us to access them direct

Log entry levels
• Fault – saved to disk, often have additional info attached (large)

• Error – saved to disk, additional info

• Default – saved to disk, normally single entries

• Info – saved to memory, optionally to disk, single entries

• Debug – only when enabled by log command

Privacy
• by default, static strings are saved in full

• by default, dynamic strings, collections, objects are censored

• programmer can override, but often left to the default

• have been bugs as well

• many log entries are made information-free by <private>

Logs not yet unified
• daily.out, monthly.out, wifi.log

• /var/log/install.log, a valuable log of softwareupdate etc.
installations

• CUPS in /var/log/cups

• third-party apps, e.g. Adobe CS/CC

• system.log, now a wasteland for legacy apps

Console (Sierra)

Console

• works with live log stream from diagnosticd, current entries only

• works with logarchive packages, but easily overwhelmed

• predicate editing sucks (Sierra)

• trying to examine a past event such as a startup too difficult

log command
• very powerful

• complex to use

• man log

• live streaming with log stream, but constrained
by firehose

• most useful is log show

• at the heart of all my tools

LogLogger (AppleScript, Oct 2016 - Jan 2017)

Consolation 3

Woodpile

Free tools
• Consolation 2, RunConsolation (2), Consolation 3

• Blowhole – command tool to write to the log, e.g. for shell scripts

• Woodpile

• DispatchView – specialised look at DAS and CTS dispatching

• T2M2, RunT2M2 – Time Machine log analysis and diagnosis

Content & formats
Each log entry is structured into data fields

syslog

default

Consolation

multi-line entries

Log fields 1

• 	 timestamp, in full, 2017-07-26 20:24:59.326229+0100

• 	 machTimestamp, in system ticks, 608403543041193

• 	 messageType, Default

• 	 category, security_exception

• 	 subsystem, com.apple.securityd

• 	 processUniqueID, 156

• 	 threadID, 868

• 	 traceID, 833721519476834308

Log fields 2

• 	 senderProgramCounter, 193733726

• 	 processID, 156

• 	 eventMessage, MacOS error: -67062

• 	 processImagePath, /usr/libexec/taskgated

• 	 processImageUUID, 4F6F0B24-7A18-3AF9-853F-8F72F6C7D7C7

• 	 senderImagePath, /System/Library/Frameworks/Security.framework/Versions/A/Security

• 	 senderImageUUID, 005E8C96-40B6-35E3-B58B-888A5F5957C2

• 	 timezoneName, may be blank.

Extraction

• live in /var/db, or logarchive?

• you can’t analyse isolated tracev3 files

• time period – last X s/m/h/d or defined start – end

• filter predicate(s)

Filter predicates

subsystem == “com.apple.duetactivityscheduler”

subsystem == "com.apple.duetactivityscheduler" ||
subsystem == "com.apple.xpc.activity" ||
(subsystem == "com.apple.TimeMachine" &&
eventMessage CONTAINS[c] “start")

log show --predicate ‘subsystem ==
"com.apple.duetactivityscheduler" || subsystem ==
"com.apple.xpc.activity" || (subsystem ==
"com.apple.TimeMachine" && eventMessage CONTAINS[c]
“start”)' --style syslog --info --start "2018-03-19
19:30:20 --end "2018-03-19 20:31:20"

Tip: Consolation 3 shows the command it submits.
Use that to learn how to get the best from log.

Additional filtering
• string search in eventMessage – Consolation 3 (plain & regex), Woodpile

• log ➜ your own filters/search, but the log messages are slabs of text

• export as CSV – Consolation 3

• export as JSON – log, Consolation 3

• top-down search – Woodpile

All

kernel

kernel

kernel

kernel – wake from sleep

DAS

CTS

Waypoints 1

• BOOT_TIME, SHUTDOWN_TIME up to Sierra 10.12.4/5

• === system boot:, === system wallclock time adjusted
in later Sierra

• Previous shutdown cause: 5

• Login Window Application Started

Waypoints 2

• gIOLastWakeAbsTime: before sleep

• PMRD: System Wake, User Active (twice), Wake reason: on wake

• AuthenticationAllowed, result: Success, login proceeding
on login

• point of no return on logout

Tips

• logger now writes to the unified log, but try Blowhole:

• blowhole -s "Script failed, error -2”

• installation log at /var/log/install.log still works; browse with Console

Security & Audit

• given the goals of the unified log, quite unsuitable – use BSM

• better to instrument macOS specifically, for separate logs

Image: Michael Barrera,
via Wikimedia Commons

Commonality

• all tools – log, Consolation, Woodpile – should work fine with
macOS, iOS, watchOS, tvOS logarchives

• all tools using log – Consolation, Woodpile – should analyse
High Sierra logs on Sierra hosts

https://eclecticlight.co

https://eclecticlight.co

