
Mak.py
By James Reynolds

Been doing this since
2000...

• Assimilator now free!

• Requires Mac OS 7.x, 8.x or
9.x

• Will not be updated to 10.x

• http://www.stairways.com/
main/assimilator

My head

I switched to Jamf!

So much free time!
• Now I can do other things like watch the Jordan Peterson

interview with Cathy Newman again!

Right?

• Right?...

Jamf is missing so much
• I'm still writing tons of scripts

• "Uploaded to Jamf Nation"

• 131 package manifests

• 81 licensed software templates

• 56 managed preference manifests

• 113 scripts (majority are SH scripts)

• 315 extension attributes (majority are SH scripts)

<rant>

• A little detour

Shell scripting? Really?
• Variables?

• Only data type is string and it is essentially a copy-paste

• Non-quoted empty strings wreck anything that expects arguments

• "Internal field separator"

• No built-in string manipulation tools (required sed and awk)

• Only has 1D arrays and no hashes/dictionaries

• Documentation

• Has anyone here read the man page for sh?

Shell scripting? Really?
• Must learn subcommands (sed, awk, /bin/*, /sbin/*, etc)

• Platform compatibility is mostly ok except when it isn't

• (Linux `killall` vs macOS `killall`...) [edit, I was wrong]

• Some syntax is impossible to understand

• Is Perl really worse than the shell?

• How do you do a web search for strange symbols?

Shell scripting? Really?
• So many shells and all are slightly different

• What's the differences between sh and bash?

• ALL errors print to STDERR and then are stepped over

• This is the most insane thing ever

• Spaces must be escaped or quoted or else: destruction...

• iTunes 2.0 installer erased hard drives because of this!

Don't get me wrong
• SH (1977) is so much easier than...

• Assembly language (1949)

• FORTRAN (1957)

• COBOL (1959)

• BASIC (1964)

• Pascal (1970)

• Forth (1970)

• C (1972)

But...

• Perl (1987) saved us from SH (1977)

• Included functionality of sed (1974) and awk (1977)

• Included real data types (with caveats)

• Influenced Python (1991), PHP (1995), Ruby (1995),
JavaScript (1995), and Windows PowerShell (2006)

• Why did we go back to SH (1977)?????

Why back to SH?
• Perl (1987) has been criticized since 1993

• A lot of newbies wrote bad Perl (1987) in the 1990's

• (Similar thing happened to PHP (1995))

• Perl includes a lot of C and SH 'isms

• Linux (1991)

• Mac OS X (2001)

• And this...

nihil sub sole novum nec valet quisquam
dicere ecce hoc recens est iam enim

praecessit in saeculis quae fuerunt ante nos

Specifically
• Ken Thompson

• Dennis Ritchie (1941-2011)

• Joe Ossanna

• Douglas McIlroy

• Peter Neumann

• Brian Kernighan

• Rudd Canaday

Specifically
• Michael Lesk

• Bill Joy

• Stephen Bourne

• David Korn

• Andrew Tanenbaum

• Gordon Bell

• And so many more...

Be afraid, very afraid

The Church of Bell Labs
(aka Unix)

• With an the ancient orthodoxy written by geniuses

• Surely they knew better than us

• I would flee right now if any of them were in the room...

• But still...

There is a better way

• Learn to read SH (1977), like C (1972), it's here for good

• But quit writing new scripts in shell!

• Unless it is a throw away script with a few lines

• That means don't publish it!

• Someone tell the Jamf community!!!!

Better ways
(10.12 sizes)

• In the future: Swift (2014) - 7 MB but ties into the system

• Ruby (1995) - 46 MB of Ruby stuff (Ruby was almost cool)

• Perl (1987) - 187 MB of Perl stuff (Perl is not cool)

• Python (1991) - 384 MB of Python stuff (Python is cool)

• The biggest single thing in macOS (except speech)

When to use SH vs Python
• If it requires more than

• 1 function or

• any type of control structure

• (like a loop, or

• if/then/else statement),

• you should probably use Python instead of shell

-http://databio.org/posts/shell_scripts.html

Little kids learn Python

You can script Minecraft
with Python

Python is cool

So learn it and use it!

Even I learned Python

• Not my favorite

• I think Lua is amazing

• I'm looking forward to Swift

• (not ready yet because of versioning and distribution)

</end rant>

• Ok, back to my presentation

• So I switched to Jamf

• I am still writing a lot of scripts

• They did something I liked

• /usr/local/bin/jamf

/usr/local/bin/jamf
Usage: jamf verb [options]

verb is one of the following:

about	 	 	 	 	 Displays information about the jamf binary

bind	 	 	 	 	 Binds this computer to a directory service

bless	 	 	 	 	 Blesses a System or a NetBoot Server

changePassword	 	 Changes a local user's password

checkJSSConnection	 Checks the availability of the JSS

createAccount	 	 	 Creates a new local account on the system

jamf
createConf	 	 	 Creates a configuration file that the jamf binary uses

createHooks	 	 Creates and configures login/logout hooks

createSetupDone	 Ensures the Setup Assistant does not launch next boot

createStartupItem	 Creates a startup script to contact the JSS

deleteAccount	 	 Deletes a local account from the local dscl database

deletePrinter	 	 Deletes a printer from the system

deleteSetupDone	 Causes the Setup Assistant to launch on the next boot

displayMessage	 Displays a message to the current user

jamf
enablePermissions	 Enables permissions on a volume

enroll	 	 	 	 Enrolls this computer with the JSS

fixByHostFiles	 	 Fixes the ByHost files

fixDocks	 	 	 Repairs docks that have ? after certain OS Updates

fixPermissions	 	 Fixes the permissions on a given target

flushCaches	 	 Flush cache files for the system and/or users

flushPolicyHistory	 Flush the policy history on the JSS

getARDFields	 	 Displays the ARD Fields on a volume

jamf
getComputerName	Displays the computer name on a volume

heal	 	 	 	 Run self healing for all packages on this computer

help	 	 	 	 Displays this message or details on a specific verb

install	 	 	 	 Installs a package

installAllCached		 Installs all packages that are cached

listUsers	 	 	 Lists all the users on the computer

log	 	 	 	 	 Log the IP address, action, and username to the JSS

manage	 	 	 Enforces the entire management framework

jamf
mapPrinter	 	 Maps a printer

mcx	 	 	 Apply Managed Preferences

modifyDock		 Installs or removes items in all users docks

mount	 	 	 Mounts a file share

notify	 	 	 Checks the JSS for new notification messages

policy	 	 	 Checks for policies on the JSS

reboot	 	 	 Reboots the computer

recon	 	 	 Runs Recon to update the inventory in the JSS

jamf
removeFramework	 	 Removes the JAMF Binary and associated files

removeSWUSettings	 Remove settings that point SWU at internal servers

resetPassword	 	 	 Resets a local user account password

runScript	 	 	 	 Runs a script

runSoftwareUpdate		 Run Software Update

setARDFields	 	 	 Sets the ARD Fields

setComputerName	 	 Sets the computer name

setHomePage	 	 	 Sets the default home page for users

jamf
setOFP		 	 	 Sets the Open Firmware mode and password

startSSH	 	 	 Starts the ssh server

uninstall	 	 	 Uninstalls a package

unmountServer		 Unmounts a file server

updatePrebindings	 Updates the prebindings on a volume

version	 	 	 	 Prints the version of this application

• So I thought, why don't I do the same with my scripts?

• Thus, mak.py is born

• Stands for Mac Army Knife

• Sounds like "magpie"

mak.py features

• Replicates some System Preferences panes

• Replicates some application Preferences (Finder, Safari)

• Creates launch daemons

• More..

 ,^.
 /\ / \
 ,^. / / / /
 \ \ / / / /
 \\ \ / / / ///
 \\ \ / / / ///
 \ \/_/____________________/ /
 `/ \ /_____________
 __________/| o Mac Army Knife o |' \
|_____________________________________/_________________\

mak.py goals
• Do what /usr/local/bin/jamf doesn't do

• Include as much as possible as one-off commands

• Free my brain so I can forget it all

• Quit having to look it up on the web

• Easily support different versions of OS X/macOS

• Make debugging new OS'es easier

• Community project

Commands
• ard - enables users to use ARD

• disable_touristd

• hack_jamf_hooks - delays login until network shows up

• help

• launchdaemon - creates LaunchDaemons

• locatedb - activates

Commands
• networksetup - Just a shortcut to /usr/sbin/networksetup

• pref - The bulk of the script (more slides on this)

• set_volume

• set_zone_ntp - sets timezone and ntp server

• shell_paths - adds shell paths (to /etc/paths.d/)

• systemsetup - Just a shortcut to /usr/sbin/system setup

The Prefs
Generic.Computer=<domain>=<key>=<format>=<value>

• Generic computer preference; 4 args; user domain

Generic.User=<domain>=<key>=<format>=<value>

• Generic user preference; 4 args; user domain

Generic.User.ByHost=<domain>=<key>=<format>=<value>

• Generic user byhost preference; 4 args; user domain

The Prefs
• Clock.User

• CrashReporter.User

• Dock.User

• Finder.User

• Gateway.Computer

• KeyAccess.Computer

• Mouse.User.Click

• Quicktime7

The Prefs
• Safari.User

• ScreenSaver.Computer

• ScreenSaver.User

• Screencapture.User

• SoftwareUpdate.Computer

• SystemUIServer.User

• Tourist.User

Constructing Prefs
'Finder.User.AppleShowAllExtensions':{

	 	 'help':'bla bla bla',

	 	 'versions':{

	 	 	 '10.12':{

	 	 	 	 'defaults':[

	 	 	 	 	 { 'domain':'com.apple.finder', 'args':['AppleShowAllExtensions',
'-bool', '%ARG0%'], 'user':True, 'byhost':True, 'arg_count':1, },

],

	 	 	 },

	 	 },

	 },

mak.py plans

• Add more functionality to each command

• ard restart

• ntp re-sync

• networksetup and systemsetup shortcuts

• Add logout and restart functions

mak.py possibilities

• Support displays

• Support profiles (bleck 🤢)

• Support launchservices (duti?)

• Switch defaults to Objective-C bridge (CFPreferences)

• Duplicate functionality of /usr/local/bin/jamf for people not
using Jamf?

